平行四边形教案

时间:2024-05-05 22:35:11
【必备】平行四边形教案4篇

【必备】平行四边形教案4篇

作为一位优秀的人民教师,往往需要进行教案编写工作,借助教案可以有效提升自己的教学能力。怎样写教案才更能起到其作用呢?以下是小编收集整理的平行四边形教案4篇,仅供参考,希望能够帮助到大家。

平行四边形教案 篇1

一、教材分析

1.教材的地位与作用

平行四边形是最基本的几何图形,也是 “空间与图形”领域中研究的主要对象之一.它在生活中有着十分广泛的应用,这不仅表现在日常生活中有许多平行四边形的图案,还包括其性质在生产、生活各领域的实际应用.

本节课既是平行线的性质、全等三角形等知识的延续和深化,也是后续学习矩形、菱形、正方形等知识的坚实基础,在教材中起着承上启下的作用.平行四边形的性质还为证明两条线段相等、两角相等、两直线平行提供了新的方法和依据,拓宽了学生的解题思路.

另外本节课是在学生掌握了平移、旋转知识的基础上探究平行四边形的性质,能使学生经历观察、实验、猜想、验证、推理、交流等数学活动,对于培养学生的合情推理能力、发散思维能力以及探索、体验数学思维规律等方面起着重要的作用.

2.教学目标:

知识技能:理解并掌握平行四边形的相关概念和性质,培养学生初步应用这些知识解决问题的能力.

数学思考:通过观察、实验、猜想、验证、推理、交流等数学活动进一步发展学生的演绎推理能力和发散思维能力.

解决问题:学生亲自经历探索平行四边形有关概念和性质的过程,体会解决问题策略的多样性.

情感态度:培养学生独立思考的习惯与合作交流的意识,激发学生探索数学的兴趣,体验探索成功后的快乐.

3.教学重点、难点:

重点:理解并掌握平行四边形的概念及其性质.

难点:运用平移、旋转的图形变换思想探究平行四边形的性质.

4.教材处理:

基于“创造性地使用教材”和“真正地以学生为本”的教学理念,我将教材内容进行合理内化、整合.

首先,打破了原教材的知识结构,构建成一个新的教学体系,分为探索平行四边形的性质和平行四边形性质的应用这样两部分,本节课是探索平行四边形的性质.这样安排能很好地体现知识结构的完整性和系统性.

然后,将教材中平行四边形性质的探究活动完全开放,给学生充分探索的时间与空间,动手实验,动脑思考.力图构建学生主动探索、获取知识的.平台,使学生真正成为实践的探索者、知识的构建者、愉快的收获者.

最后,把一道命题证明的练习题改编成实验操作型问题.学生利用课前准备好的教具制作成模型,让图形动起来.这样设计有利于学生在图形运动变化的过程中去发现其中不变的关系,从而发现图形的性质.

总之,教材处理力求在深挖概念内涵;拓展性质外延;深化练习效用的过程中达到培养学生创新意识和实践能力的教学目的.

二.教学方法与手段

本节课在教法上体现教师的“启发引导”,帮助学生实现认识上与态度上的跨越;在学法上突出学生的“探索发现”,在教学过程中立足于让学生自己去观察、去发现、去创造.利用多媒体、自制教具辅助教学,增强教学的直观性、实效性.

平行四边形教案 篇2

【设计理念】

本课以新课程理念为指导,以学生发展为根本,以问题引领为指向,让学生亲身经历探究平行四边形面积计算公式的推导过程。通过猜测验证、转化变形、联系比较、迁移推理、回顾总结、实践应用等数学活动,掌握平行四边形面积的计算方法,感悟数学的思想方法,获得基本的数学活动经验,养成良好的数学学习品质。教学内容

【教学内容】

《义务教育教科书》人教版数学课本五年级上册87——88页。

【教材、学情分析】

平行四边形面积计算,是在学生掌握了长方形、正方形面积计算方法的基础上安排的教学内容。是学习平面图形面积计算的进一步拓展。应用转化的数学思想方法推导平面图形面积计算公式是学生的初次接触,让学生为了解决问题主动地实现转化就成为本节课教学的关键。只要突破这一关键,其余的问题就会迎刃而解。

学生对平行四边形的特征有了一定的了解,但对平行四边形如何转化为长方形还没有经验,转化的意识也十分薄弱。因此,要让学生把转化变为一种需要,教师必须通过问题引领,为学生提供解决问题的直观材料和工具帮助学生探究,从而实现探究目标。

【教学目标】

1、经历平行四边形面积公式的探究推导过程,掌握平行四边形面积计算方法。能应用公式解决实际问题。

2、在探究的过程中感悟“转化”的数学思想和方法。

3、通过猜测、验证、观察、发现、推导等活动,培养学生良好的数学品质。

4、引领学生回顾反思,获得基本的数学活动经验。

【教学重点】

推导平行四边形面积计算公式。应用公式解决实际问题。

【教学难点】

理解平行四边形的面积计算公式的推导过程。

【教学准备】

平行四边形纸片若干,直尺、剪刀、。

【教学过程】

一、创设情境,激发兴趣。

讲述阿凡提智斗巴依老爷的故事,激发学生的好奇心。

【设计意图:创设生动的故事情境,加强了数学与生活的联系,让学生感受到数学就在身边,学习平行四边形的面积是有价值的,从而诱发学习的欲望。】

二、组织探究,推导公式。

1、联系旧知,做出猜想。

看到这个题目,你想到了我们学过哪些有关面积的知识?

大胆猜想:平行四边形的面积可能和哪些条件有关呢?该怎样计算?

【设计意图:引导学生回顾长方形、正方形的面积公式,让学生在已有知识经验的基础上,进而猜测平行四边形的面积公式。】

2、初步验证,感悟方法。

根据自己的猜想,测量并计算面积,然后选择合适的'工具进行验证。

引导学生:可以用数方格的方法试一试。(出示方格纸中的平行四边形)

学生数方格并来验证自己的猜想。

【设计意图:让学生在算、数、观察的基础上进行比较,让学生初步领悟到平行四边形和长方形的关系,放手让学生自主探索、研究、比较,验证自己的猜想。】

3、剪拼转化,发现规律。

除了数方格,我们还能用什么方法来验证呢?(学生思考)

能否将平行四边形转化成我们学过的图形再来进行计算呢?

(1)请大家先以小组进行讨论,然后动手实践,比一比哪个小组完成的更快。

(2)展示交流。(演示)

【设计意图:把平行四边形转化成长方形,剪、拼的方法是关键,通过剪、拼方法的交流,凸显了剪、拼方法的本质,训练了学生思维的灵活性。 ……此处隐藏1599个字……线段到底有多少条呢?(一组平行线之间的距离处处相等,有无数条。)

老师示范画一组的垂直线段,说明:在平行四边形里,一组对边之间的垂直线段就是平行四边形的高,而对边就是底。

3、学生自主看书上P44页,说一说:什么是平行四边形的高?什么是底?

[由复习平行线之间距离入手,让学生动手量、画,然后明确平形四边形高、底的含义,注重链接知识的最近发展区,符合学生的认知规律]

4、师出示实物平行四边形,指一指两组底边上的高。

5、找出底边上的高:(图略)

6、做书上试一试,量出底和高分别是多少?

(1)先指一指高垂直于哪条边;(2)量出每个平行四边形的底和高各是多少厘米。

7、想想做做5,先指一指平行四边形的底,再画出这条底边上的高,注意画上直角 标记。如果有错误,让学生说说错在哪里。

[平行四边形的高、底的认识是本课教学的难点,通过量平行线间的距离,使学生逐步认识平行四边形的高和底。在扎实认识了高和底的基础上,让学生经历指高、找高、量高、画高的过程,并通过变式,加深对知识点的掌握。]

四、练习提高。

1、谈话:课一开始,老师将长方形一拉变成平行四边形,现在老师再轻轻一移又变成了长方形,同学们观察一下,长方形和平行四边形哪里变了,哪里没变,讨论一下它们有什么相同点和不同点呢?

学生小组交流,集体汇报。

生1:相同点是它们的对边都是平行且相等;

生2 :不同点是长方形的角都是直角,而平行四边形的角不是直角;

生3:平行四边形是长方形变形后产生的;

2、教师:平行四边形不改变边长的情况下可以改变成不同形状的平行四边形,这就是平行四边形的不稳定性。请同学看书上P45页你知道吗?

提问:说一说,生活中平行四边形的这种特点在哪些地方有应用?

生1:有种可以弹的那种拳击套;

生2:晒衣服的衣架;

生3:捕鱼的网;

五、实践游戏:

1、想想做做2,用2块、4块完全一样的三角尺分别拼成一个平行四边形,在小组里交流是怎样拼的。

2、想想做做3,用七巧板中的3块拼成一个平行四边形。

出示,你能移动其中的一块将它改拼成长方形吗?

3、想想做做4,想把一块平行四边形的木板锯开做成一张尽可能的的长方形桌面,该从 哪里锯开呢?找一张平行四边形纸试一试。

[练习设计既富有情趣,又让学生在活动中体验到所学平行四边形知识的价值,再次感悟到数学知识与现实生活的密切联系。]

六、全课小结

今天我们重点研究了哪种平面图形?它有什么特点?回想一下,我们通过哪些活动进行研究的?

[小结简明扼要,既突出本节课的知识重点,又提升了学生的认知策略。]

教学反思:

一、 激发原认知关注学生知识储备。

用发展的眼光来设计学习活动,让学生在探究中亲历知识形成的过程,远比让学生直接但却被动地获取现成知识结论要更加具有深远的意义和影响,学生的观察、猜想、探索和创新等其他各方面能力都能得到有效地开发和锻炼。纸上得来终觉浅。在体验中自身感悟的东西理解深刻、印象久远。对平行四边形的特征研究,我本着让学生亲历知识的形成过程的方法,让学生依据探究内容自己有序探究,自己量一量、比一比、想一想,从而得出平行四边形的特征,学生自然也得到了有效地学习。

二、重视过程把探究机会让给学生。

《课标》在基本理念中指出:数学教学活动,必须建立在学生的认知发展水平和已有的知识经验基础上,为学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握数学知识。本课正是实践这种理念的一个典范,如我在教学中提供长短不一的塑料棒和钉字板,让学生根据印象中的平行四边形制作平行四边形,自主选择学具围成各种各样的平行四边形,其间学生既能采用最简单的4根塑料棒来围成,还有用钉字板围。操作的成功不但让学生对平行四边形原有认知表现外显,更让学生为下面进一步观察平行四边形边特点提供了素材,最重要的是提升学生灵活应用数学解决实际问题的策略与能力,并从中得到成功的体验,树立学习的信心。

平行四边形教案 篇4

教学目标

1.在观察、操作、推理、归纳等探索过程中,发展学生合情推理的能力,进一步培养学生数学说理的习惯与能力。

2.在理解平行四边形的简单识别方法的活动中,让学生获得成功的喜悦,体验到数学活动充满着探索和创造,感受到数学推理的严谨性。

3.培养学生独立思考的习惯。

教学重点与难点

重点:探索平行四边形的识别方法。

难点:理解平行四边形的识别方法与应用。

教学准备

方格纸、直尺、图钉、剪刀。

教学过程

一、提问。

1.平行四边形对边( ),对角( ),对角线( )。

2.( )是平行四边形。

二、探索,概括。

1.探索。

(1)按照下面的步骤,在力格纸上画一个有一组对边平行且相等的四边形。

步骤1:画一线段AB。

步骤2:平移线段AD到BC。

步骤3:连结AB、DC,得到四边形ABCD,其中AD∥BC,AD=BC。

(2)如图,沿四边形的边剪下四边形,再在一张纸上沿四边形的边画出一个四边形。把两个四边形重合放在一起,重合的点分别记为A、B、C、D。通过连结对角线确定对角线的交点O,用一枚图钉穿过点O,把其中一个四边形绕点O旋转,观察旋转180后的四边形与原来的四边形是否重合,重复旋转几次,看看是否得到同样的结果。

根据上述的过程,能否断定这个四边形是平行四边形?

2.概括。

我们可以看到旋转后的四边形与原来的四边形重合,即C点与A点重合,B点与D点重合。这样,我们就可以得到_BAC=ACD,从而AB∥DC,又AD∥BC,根据平行四边形的定义,可知道四边形ABCD是平行四边形。由此可以得到:

一组对边平行且相等的.四边形是平行四边形。

(一步一步的引导学生得出结论,然后让学生用自己的语言叙述。)

三、应用举例。

例4 如图,在平行四边形ABCD中,已知点E和点F分别在AD和BC上,且AE =CF,连结CE和AF,试说明四边形AFCE是平行四边形。

四、巩固练习。

如图,在平行四边形ABCD中,已知M和N分别是AB、CD上的中点,试说明四边形BMDN也是平行四边形。

五、拓展延伸。

在下面的格点图中,以格点为顶点,你能画出多少个平行四边形?

六、看谁做的既快又正确?

七、课堂小结。

这节课你有什么收获?学到了什么?还有什么疑问吗?

八、布置作业。

补充习题

《【必备】平行四边形教案4篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式